Locally Uniform Comparison Image Descriptor
نویسندگان
چکیده
Keypoint matching between pairs of images using popular descriptors like SIFT or a faster variant called SURF is at the heart of many computer vision algorithms including recognition, mosaicing, and structure from motion. However, SIFT and SURF do not perform well for real-time or mobile applications. As an alternative very fast binary descriptors like BRIEF and related methods use pairwise comparisons of pixel intensities in an image patch. We present an analysis of BRIEF and related approaches revealing that they are hashing schemes on the ordinal correlation metric Kendall’s tau. Here, we introduce Locally Uniform Comparison Image Descriptor (LUCID), a simple description method based on linear time permutation distances between the ordering of RGB values of two image patches. LUCID is computable in linear time with respect to the number of pixels and does not require floating point computation.
منابع مشابه
A Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor
The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملPerceptual uniform descriptor and Ranking on manifold: A bridge between image representation and ranking for image retrieval
Incompatibility of image descriptor and ranking is always neglected in image retrieval. In this paper, manifold learning and Gestalt psychology theory are involved to solve the incompatibility problem. A new holistic descriptor called Perceptual Uniform Descriptor (PUD) based on Gestalt psychology is proposed, which combines color and gradient direction to imitate the human visual uniformity. P...
متن کاملNeighborhood matrix: A new idea in matching of two dimensional gel images
Automated data analysis and pattern recognition techniques are the requirements of biological and proteomicsresearch studies. The analysis of proteins consists of some stages among which the analysis of two dimensionalelectrophoresis (2-DE) images is crucial. The aim of image capturing is to generate a Photostat that can be used infuture works such as image comparison. The researchers introduce...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کامل